

Rat Models of Epileptogenesis

When does epileptogenesis ≠ epileptogenesis?

- Three different rat models of epileptogenic injury
- Focal amygdala stimulation
- Systemic pilocarpine injection
- Lateral fluid-percussion induced traumatic brain injury
- Each model identified differentially methylated regions associated with epilepsy (hippocampus)
 - No consensus of across all three models
 - Hypermethylation gene bodies; hypomethylation non-genic areas
 Pitter Zeneral to descent areas
- But.... 7 upregulated genes were common to all 3 models

Potential Therapeutics

DNA methyltransferases

- Decitabine (approved to treat leukemia) and zebularine (preclinical trials for cancer) have been shown to inhibit long-term memory potentiation in the hippocampus¹
- DNMT inhibitor RG108 upregulates Gria2, and blocks seizure inducing effects of kainic acid in the hippocampus²

Adenosine augmentation

- Endogenous regulator of DNMT (i.e., high levels of adenosine inhibit methyl donor transfer)
- Adenosine augmentation significantly reduces DNA methylation in status epilepticus and completely suppressed seizure incidence (incidence was reduced for at least three months after therapy)³
- Inhibits mossy fiber sprouting in hippocampus, and prevented progression of epilepsy for up to three months⁴

Fetal Programming

- Resetting of important physiological parameters by environmental events that can endure into adulthood
- Influenced by DNA methylation and histone modifications Evidence of fetal programming in several neuropsychiatric
- disorders
- Schizophrenia¹, depression², autism³
- Differential methylation seen in children (buccal cells) with fetal alcohol spectrum disorder⁴
 - Gene ontology showed enrichment of neurodevelopmental processes and diseases, such as anxiety, epilepsy and autism spectrum disorders
- Gestational diabetes increases incidence of neuropsychiatric disease in offspring⁵
 - Incidence of infantile spasms increased (not significant)
 - Genome Biol 15:483.
 Nemoda et al 2015, Transl Psychiatry 5:e545.
 Al 2016, Mol Autism 7:51.
 Portalas-Casama et al 2016, Epigenetics Chromat

CRISPR/Cas9 Editing

Protein Modifications

- Chromatin consists of histone and non-histone proteins bound to DNA
 - Histone modifications strongly regulate transcription, in conjunction with DNA methylation
 - E.g., methylation/demethylation, acetylation/deacetylation, phosphorylation, ubiquitination

Histone Modifications in Epilepsy					
Model	Region	Target	Modification		
Rat	CA3	BDNF	↑ H4 acetylation ¹		
	CA3	GluR2	\downarrow H3, H4 acetylation ¹		
	Hippocampus	n/a	↑ H4 acetylation ²		
	Dentate gyrus	n/a	↑ H4 phosphorylation ²		
	Hippocampus	Mmp9	↑ H3 Ser10 phosphorylation ³		
	Hippocampus	n/a	\downarrow H3 Lys27 trimethylation ³		
	Hippocampus	n/a	↑ H2A Lys119 ubiquitination ³		
Mouse	Hippocampus	n/a	↑ H3 Ser10 phosphorylation ⁴		
		Gad67/Gad65	\downarrow acetylation in GABAergic neurons (\downarrow expression of GAD67/GAD65); increase in histone deacetylases (HDACs) post seizure ⁵		
Human	Temporal neocortex		\downarrow H3, H4 acetylation ⁵		
Table modified from: Hauser et al 2017, Neuroscientist, Epub ahead of print					
1. Huang et al 2002, J Neurosci 22:8422-8. 2. Sng et al 2006, Eur J Neurosci 23:1269-82. 3. Zybura-Broda et al 2016, FLoS One 11:00159745. 4. Crosio et al 2003, J Call Sci 116:4905-14. 14					

miRNAs in the Pathology of Epilepsy					
miRNA	Model	Region	Implication		
miR-34a	Mice Rat	CA1, CA3 CA1	\uparrow in model of status epilepticus ¹ \uparrow in model of temporal lobe epilepsy ²		
miR-128	Mice	Germline	ψ expression results in fatal epilepsy ³		
miR-132	Mice Rat	CA3 Hippocampus	↑ in status epilepticus ⁴ ↑ in chronic temporal lobe epilepsy ⁵		
miR-134	Mice Rat	CA3 Hippocampus	↑ in status epilepticus ⁶ ↑ in chronic temporal lobe epilepsy ⁵		
miR-184	Mice	CA1	↑ following seizure preconditioning; inhibiting expression results in increased seizure-induced neuronal death; may be involved in tolerance ⁷		
** Selection of significant results.					
Expression of let-7a and miR-23a/b is dysregulated from immediately after status epilepticus until 50 days later					
Not consistent direction; variable at different time points ⁵					
Table modified from Younus and Reddy 2017, Pharmacology and Therapeutics 177:108-22.					
1. Sance <i>et al</i> 2012, Cell Deuth and Disease 3-2627. 2. Hu <i>et al</i> 2012, BMC Neuroscience 13:115. 3. Tan <i>et al</i> 2013, Brain Research 1387:134-0. 4. Jimenez-Mateos <i>et al</i> 2011, Am / Pathol 172:2519-32. 5. Song <i>et al</i> 2011, Brain Research 1387:134-0. 6. Jimenez-Mateos <i>et al</i> 2012, Am / Pathol 172:2519-32. 7. McKernan <i>et al</i> 2012. Experimental Neurobox 227:346-54. 17					

Therapies

- Histone deacetylase inhibitors (HDACi)
- Benzamides (e.g., entinostat, mocetinostat)
- Hydroxymates (e.g., vorinostat, trichostatin A)
- ** Aliphatic fatty acids: can cross blood-brain barrier
 - Valproic acid: approved for treatment of epilepsy since 1967;

 H3 acetylation in brain, facilitates DNA demethylation^{1,2}

 Sodium but rate a L12 and L14 acetylation depresent development
 - Sodium butyrate: † H3 and H4 acetylation, decreases development of epileptogenesis (delayed onset of severe epilepsy/seizures)³
- Histone acetyltransferases (HATs)
- Curcumin modulates HATs⁴ and can attenuate seizures in a kainate-induced model of epilepsy⁵
- None are in clinical trials for brain disorders
- Current approaches exert global epigenetic effects
- Specificity may help: epigenetic editing for targeted modifications
 Eleuteri et al 2009, Neurotoxicity Res 15:127-32.
 Dustsch et al 2006, Eur Neuropsychoptamacol 18:555-8.
 Subsch et al 2006, Far Neuropsychoptamacol 18:555-8.

	miRNA Biomarkers in Epilepsy				
2	EpimiRBase: list of miRNAs associated with epilepsy ¹				
2	Serum miRNAs have been associated with epilepsy ²				
	Upregulation: let-7d-5p, miR-106-5p, miR-130a-3p, miR-146a-5p				
	Downregulation: miR-15a-5p, miR-194-5p				
	miR-106b-5p best diagnostic value (80.3% sensitivity, 81.2% specificity)				
2	Serum miRNA profiles show differences in patients with				
	controlled versus refractory seizures ³				
	Dysregulation in drug-resistant epilepsy: miR-194-5p, miR-301a-3p, miR-30b-5p, miR-342-5p and miR-4446-3p				
2	miR-219 expression decreased in CSF of patients with				
	temporal lobe epilepsy (n=8) ⁴				
2	Electrochemical detection of miR-134 may serve as a				
	diagnostic tool, showing increased plasma miR-134 levels in				
epileptics versus controls ⁵					
	in miR-134 ↑ in epilepsy and ↓ following intake of valproic acid ⁶				
1. I 3. V	Mooney et al 2016, Bioinformatics 32:1436-8. 2. Wang et al 2015, Sci Rep 5:9522. 4. Zheng et al 2016, Mol Neurobiol 53:1-7. 18				

miRNA Expression in Epileptic Brains

- miR-181a expression increased in temporal lobe epilepsy in children (surgical resection for intractable epilepsy, n=25)¹ miR-203 expression increased in hippocampal postmortem tissue of epileptics (n=6)²
- 20 miRNAs dysregulated in the hippocampus of mesial temporal lobe epilepsy with hippocampal sclerosis (n=33, control n=9)3
- Potentially regulate targets and pathways implicated in epilepsy (potassium channels, γ-aminobutyric acid, neurotrophin signaling, axon guidance)
- miR-124 expression reduced in patients with refractory epilepsy (n=12, temporal neocortex)⁴

n et al 2016, Genet Mol Res 15:15017798. 2. Lee et al 2016, Mol Neurobiol 54:3300-8. Incurova et al 2017, Epilepsia 58:1782-93. 4. Wang et al 2016, Exp Rev Mol Med 18:e4

miRNAs: Blood-Brain Correlations

- Investigated correlations between peripheral blood and brain miRNA expression in a baboon model
- Identified 50 miRNAs that showed at least moderate correlation between blood and three brain regions involved in the default mode network

Potential Therapies

14 miRNAs functionally interrogated, 12 show beneficial effect on EEG, seizures or histopathology¹

- AntagomiR (miRNA inhibitor) reduces status epilepticus or protected hippocampus (miRNA upregulated in model) miR-34,² miR-132,³ miR-134,^{4,5} miR-181a,⁶ miR-199a,⁷ miR-210⁸
- AntagomiR spontaneous recurrent seizures miR-134,4 miR-2039
- AgomiR (miRNA mimic) reduces status epilepticus or protected hippocampus (miRNA downregulated in model) miR-128,10 miR-219,11 miR-23b,12 miR-12413
- AgomiR reduces spontaneous recurrent seizures miR-22-3p14

ll et al 2016, Lancet Neurol 15:1368-76. - Mateos et al 2011, Am J Pathol 179-2519-32. - Mateo et al 2015, Brain Struct Func 220:2387-99. al 2016, Epilesis 57:706-16. 12016, Mol Neurobiol 54:3300-8. et al 2016. Mol Neurobiol 54:330-8. Hu et al 2012, BMC Neuroscience 13:115.
 Jimenez-Mateos et al 2012, Nat Med 18:1087-94.
 Ren et al 2016, Genet Mol Res 15:15017798.
 Chen et al 2016, Neuropsych Dis Treat 12:1731-7.
 Tan et al 2018, Science 342:1254-8.
 Zhan et al 2010. Neuropsych 27:764-8.

miRNAs: Enrichment in Neurological **Processes**

miRNA Enrichment Analysis and Annotation (miEAA) used to define pathways enriched for miRNA target genes

anto Borl	FDR-adjusted p-value	Expected number of miRNAs	Observed number of miRNAs
GABA receptor signaling	0.002	3.8	13
Alzheimer's disease	0.006	7.2	16
Serotonin receptor signaling	0.006	2.9	10
Glutamate receptor group	0.011	4.2	11
Acetylcholine receptor signaling	0.022	4.9	11
Axon guidance	0.046	3.6	8

	miRNA	Phenotype	P-value		
	miR-144-3p	Fusiform thickness	1.98 x 10 ⁻⁵		
		Amygdala volume	8.50 x 10 ⁻⁵		
	miR-181a-2-3p	Fusiform thickness	1.13 x 10 ⁻⁴		
	miR-155-5p	Parahippocampal volume	1.61 x 10 ⁻⁵		
	miR-29a-5p	Rostral anterior cingulate volume	4.87 x 10 ⁻⁵		
≷ m ar	iR-144-3p sh nygdala (r=1	ows high correlation betwee .000) and hippocampus (r=	en blood a 0.66)	nd	
miR-144-3p is implicated in fear extinction (hippocampu modulates this) and action of mood stabilizers					

Future of Epilepsy Therapies

Optimal time window

- Reliable biomarkers to predict epilepsy onset (prior to structural neuronal damage by seizures)
- New molecular tools
 - Organoids/mini-brains
 - CRISPR
 - miRNA delivery to neuronal cells
 - DREADDs (designer receptors exclusively activated by designer drugs)
 - Remotely control neuronal signaling
 - Allows temporal and spatial control of G-protein signaling (i.e., not an epigenetic therapy, but could target genes that are epigenetically modified in epilepsy)

Our Ultimate Goal

Use of cellular models (human) and epigenetic tools to identify novel treatments for epilepsy

- Targeted approaches: we need to know what genes/miRNAs are dysregulated
- We need to understand what phenotypes are useful markers of disease

New animal models to establish treatment efficacy and safety

- Epilepsy occurs naturally in our cohort of baboons
 - Baboons are more similar to humans (behavior, genetics, physiology, brain structure) than rodents
 - Are the same genes/miRNAs responsible?

